Projected estimation for large-dimensional matrix factor models

نویسندگان

چکیده

In this study, we propose a projection estimation method for large-dimensional matrix factor models with cross-sectionally spiked eigenvalues. By projecting the observation onto row or column space, simplify analysis series to that of lower-dimensional tensor. This also reduces magnitudes idiosyncratic error components, thereby increasing signal-to-noise ratio, because linearly filters matrix. We theoretically prove projected estimators loading matrices achieve faster convergence rates than existing under similar conditions. Asymptotic distributions are presented. A novel iterative procedure is given specify pair and numbers. Extensive numerical studies verify empirical performance method. Two real examples in finance macroeconomics reveal patterns across rows columns, which coincide financial, economic, geographical interpretations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Covariance Matrix Estimation in Approximate Factor Models

Due to the abundance of high dimensional data in modern econometric applications, the estimation of a large covariance matrix for panel data has become an important question. We consider the following factor model: yit = b ′ ift + uit, i ≤ N, t ≤ T where ft is a fixed dimension vector of common factors, which may or may not be observable; bi is the factor loading vector, and uit is the idiosync...

متن کامل

infinite dimensional garch models

مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...

15 صفحه اول

Estimation of the Covariance Matrix of Large Dimensional Data

This paper deals with the problem of estimating the covariance matrix of a series of independent multivariate observations, in the case where the dimension of each observation is of the same order as the number of observations. Although such a regime is of interest for many current statistical signal processing and wireless communication issues, traditional methods fail to produce consistent es...

متن کامل

Smooth-projected Neighborhood Pursuit for High-dimensional Nonparanormal Graph Estimation

We introduce a new learning algorithm, named smooth-projected neighborhood pursuit, for estimating high dimensional undirected graphs. In particularly, we focus on the nonparanormal graphical model and provide theoretical guarantees for graph estimation consistency. In addition to new computational and theoretical analysis, we also provide an alternative view to analyze the tradeoff between com...

متن کامل

High dimensional covariance matrix estimation using a factor model

High dimensionality comparable to sample size is common in many statistical problems. We examine covariance matrix estimation in the asymptotic framework that the dimensionality p tends to∞ as the sample size n increases. Motivated by the Arbitrage Pricing Theory in finance, a multi-factor model is employed to reduce dimensionality and to estimate the covariance matrix. The factors are observab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2022

ISSN: ['1872-6895', '0304-4076']

DOI: https://doi.org/10.1016/j.jeconom.2021.04.001